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Nonlinear internal gravity wave beams
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Based on linear inviscid theory, a two-dimensional source oscillating with frequency
ω0 in a uniformly stratified (constant Brunt–Väisälä frequency N0) Boussinesq fluid
induces a steady-state wave pattern, also known as St Andrew’s Cross, that features
four straight wave beams stretching radially outwards from the source at angles
± cos−1(ω0/N0) relative to the vertical. Similar wave beams are generated by oscillatory
stratified flow over topography and also appear in simulations of thunderstorm-
generated gravity waves in the atmosphere. Uniform plane-wave beams of infinite
extent are in fact exact solutions of the nonlinear inviscid equations of motion, and
this property is used here to study the propagation of finite-amplitude wave beams
taking into account weak viscous and refraction effects. Oblique beams (ω0 < N0)
are considered first and an amplitude-evolution equation is derived assuming slow
modulations along the beam direction. Remarkably, the leading-order nonlinear
terms cancel out in this evolution equation and, as a result, the steady-state similarity
solution of Thomas & Stevenson (1972) for linear viscous beams is also valid in the
nonlinear régime. Moreover, for the same reason, nonlinear effects are found to be
relatively unimportant for two-dimensional and axisymmetric beams that propagate
nearly vertically (ω0 ≈ N0) in a Boussinesq fluid. Owing to the fact that the group
velocity vanishes when ω0 = N0, however, the transient evolution of nearly vertical
beams takes place on a slower time scale than that of oblique beams; this is shown to
account for the discrepancies between the steady-state similarity solution of Gordon &
Stevenson (1972) and their experimental observations. Finally, the present asymptotic
theory is used to study the refraction of nearly vertical nonlinear beams in the
presence of background shear and variations in the Brunt–Väisälä frequency.

1. Introduction
Since gravity provides a preferred direction, the propagation of internal gravity

waves in stratified fluids is anisotropic and gives rise to a variety of interesting and
often intuitively unexpected phenomena. A classical example that clearly illustrates the
effects of anisotropy, is the wave pattern induced by an oscillatory two-dimensional
source in a uniformly stratified (constant Brunt–Väisälä frequency N0) Boussinesq
fluid; see, for example, Lighthill (1978, § 4.4). In this instance, the dispersion relation
of linear sinusoidal waves is such that the wave frequency ω is a function only of the
angle θ that the wavenumber k makes with the vertical:

ω = N0 sin θ; (1.1)
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the group velocity cg = ∇kω, therefore, is perpendicular to the phase velocity c =
(ω/k2)k, energy being transported along rather than perpendicularly to the wave
crests. Hence, on kinematic grounds, we cannot expect cylindrical wavefronts from
a two-dimensional oscillating source as would be the case in an isotropic medium
where c and cg are collinear. Instead, the induced steady-state internal wave pattern
consists of four straight arms stretching radially outwards from the source along the
characteristic directions ± cos−1(ω0/N0) relative to the vertical, ω0 being the source
frequency. For each of these arms, the group velocity points outwards along the
arm direction, as required by the radiation condition. This pattern, also known as
‘St Andrew’s Cross’, was verified experimentally in the laboratory by vibrating a
horizontal cylinder in a stratified fluid tank (Mowbray & Rarity 1967).

The kinematic argument above furnishes the geometry of the wave pattern in the
far field, but the precise structure of the wave beams emanating from the source as
well as the near-field response depend on the details of the source and can be deduced
only from a more complete solution. Assuming inviscid flow, Appleby & Crighton
(1986), in particular, analysed the linear wave pattern induced by small rectilinear
oscillations of a circular cylinder, including non-Boussinesq effects. Hurley (1997)
discussed the analogous problem for an elliptical cylinder in a Boussinesq fluid and
emphasized the need for including viscous effects to smooth out the singular behaviour
of the inviscid solution along the characteristic lines tangent to the oscillating
body.

A viscous steady-state similarity solution for obliquely propagating thin internal
wave beams, generated by a line source oscillating with frequency ω0 < N0, was
presented by Thomas & Stevenson (1972) and was later extended by Makarov,
Neklyudov & Chashechkin (1990) to more complex types of compact sources. Thomas
& Stevenson (1972) also carried out laboratory experiments using a vibrating circular
cylinder as forcing and found good agreement with their similarity solution which
reveals that viscous beams broaden and their amplitude drops off as they propagate
away from the source. In a more recent theoretical study extending the inviscid
analysis of Hurley (1997) for a vibrating elliptic cylinder, Hurley & Keady (1997)
obtained an approximate viscous solution which approaches the similarity solution
of Thomas & Stevenson (1972) in the far field. The theoretical predictions of Hurley
& Keady (1997) are in qualitative agreement with detailed experimental observations
for a vertically oscillating elliptic cylinder reported by Sutherland & Linden (2002),
although certain effects arising from the viscous boundary layer forming around the
cylinder cannot be captured by the theory.

Internal wave beams akin to those seen in St Andrew’s Cross may also be generated
by harmonic forcing other than small oscillations of a cylindrical object. Bell (1975),
for instance, studied the steady-state wave pattern induced by a time-harmonic
current of uniformly stratified Boussinesq fluid over a smooth bottom bump, for
the purpose of modelling internal wave generation by tidal flows over sea-floor
topography. In the reference frame moving with the current, the far-field response
turns out to be a superposition of a finite number of V-shaped patterns, each being
essentially half of a St Andrew’s Cross, with frequency equal to that of the background
flow and all its higher harmonics below the Brunt–Väisälä frequency. These additional
harmonics arise here because the oscillation amplitude of the bottom obstacle (in
the reference frame moving with the background flow) need not be small compared
to the width of the obstacle; in the small-amplitude limit, of course, the far-field
response involves only one V-shaped pattern with frequency equal to that of the
background flow, as was found by Appleby & Crighton (1986) and Hurley (1997).
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In addition, there is now evidence from numerical simulations and field observations
that a significant component of thunderstorm-generated gravity waves in the
atmosphere is in the form of beam-like structures. Among several relevant numerical
efforts, most notably Fovell, Durran & Holton (1992) and Alexander, Holton
& Durran (1995) explored the generation of gravity waves by two-dimensional
squall lines and put forward an interesting analogy with mechanical forcing. They
suggested that oscillating updraft and downdraft cells within a squall line act as
mechanical oscillators, similar to oscillating objects, and are responsible for the fan-
like distribution of gravity wave beams seen in their simulations to propagate at
various angles to the vertical. This ‘mechanical oscillator effect’ is further supported
by three-dimensional simulations modelling actual storms (Lane, Reeder & Clark
2001; Piani et al. 2000). Of course, in three dimensions, mechanical oscillators act as
point rather than line sources, and the generated gravity-wave disturbances turn out
to be conical in shape, having nearly circular phase lines in planes of constant height,
as indicated by the three-dimansional Green’s function derived by Voisin (1991). It is
worth noting that such circular patterns have been identified in satellite images of the
upper stratosphere and, based on the dispersion relation (1.1), Dewan et al. (1998)
were able to link these gravity waves to isolated thunderstorms.

All existing theoretical models of St Andrew’s Cross and previous discussions
of internal gravity wave beams in general are based on the linearized equations
of motion. On the other hand, it so happens that uniform plane-wave beams of
infinite extent that obey the linear dispersion relation (1.1) in a uniformly stratified
Boussinesq fluid, are also solutions of the nonlinear inviscid equations of motion.
This fact, which apparently had passed unnoticed before†, proves most useful here in
setting up a finite-amplitude theory for the propagation of modulated wave beams
that also takes into account weak viscous and refraction effects. While modulated
wave beams are not exact nonlinear solutions, quite remarkably, it turns out that
the leading-order nonlinear modulation terms cancel out in the amplitude equation
governing the propagation of finite-amplitude beams. This implies that the steady-
state similarity solution of Thomas & Stevenson (1972) for linear viscous beams is
valid in the nonlinear regime as well.

The case of nearly vertically propagating beams with frequency close to the Brunt–
Väisälä frequency, requires special treatment because, according to (1.1), the group
velocity vanishes when θ = 0; as a result, energy cannot be easily radiated away
from the source and the transient response evolves on a relatively slow time scale.
Assuming that the driving frequency is close to the Brunt–Väisälä frequency, an
evolution equation for finite-amplitude slightly viscous beams is derived, taking into
account non-Boussinesq effects as well as refraction effects owing to the presence
of a weak background shear and small variations in the Brunt–Väisälä frequency.
Again, the leading-order nonlinear modulation terms cancel out, the only nonlinearity
coming from non-Boussinesq effects. Moreover, it is pointed out that these results
carry over to nearly vertically propagating axisymmetric beams.

For the particular case of vertically propagating viscous beams generated by a
line source oscillating at exactly the Brunt–Väisälä frequency in a Boussinesq fluid,

† It is, of course, well known (see, for example, Meid 1976) that linear sinusoidal wavetrains also
satisfy the nonlinear equations of motion, and nonlinear corrections to such disturbances owing to
non-Boussinesq effects were discussed by Kistovich, Neklyudov & Chashechkin (1990). We could
not find, however, any reference to the fact that plane-wave beams, irrespective of their transverse
profiles, are nonlinear solutions as well.
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Gordon & Stevenson (1972) found a linear similarity solution which is also a possible
steady state of the evolution equation derived here for finite-amplitude disturbances.
The corresponding transient response, however, reveals that the approach to this
steady state is rather slow owing to the fact that the group velocity of vertically
propagating disturbances vanishes; this provides an explanation for the discrepancies
noted by Gordon & Stevenson (1972) between their experimental observations and
similarity solution.

Finally, based on the present asymptotic theory, we discuss refraction effects on
nearly vertical nonlinear beams brought about by background shear and variations
in the Brunt–Väisälä frequency.

2. Preliminaries
Consider internal gravity wave disturbances in an incompressible density-stratified

fluid. We shall work with dimensionless variables throughout, using a characteristic
length L associated with the waves as length scale, 1/N0 as time scale, N0 being a typi-
cal value of the Brunt–Väisälä frequency, and a typical value ρ0 of the background
density. The vertical (y-) coordinate is taken to point upwards and the background
density ρ(y) is assumed to be stable (ρy < 0). The Brunt–Väisälä frequency N (y) then
is given by

ρy = −β ρ N2; (2.1)

the Boussinesq parameter β = LN 2
0 /g is a measure of stratification, g being the

acceleration due to gravity.
We find it convenient to work with the reduced density ρ and pressure p, defined

so that β ρ ρ and ρ p are the density and pressure perturbations, respectively, from
hydrostatic equilibrium. Taking into account (2.1), the governing equations for the
velocity field u, ρ and p then can be expressed as

∇ · u = 0, (2.2)

ρt + u · ∇ρ − N2(1 + βρ)v = 0, (2.3)

(1 + βρ)(ut + u · ∇u) = −∇p − (ρ − βN2p) j +
ν

ρ̄
∇2u + F, (2.4)

where v denotes the vertical velocity component, j is the unit vector along the vertical
direction, ν stands for the inverse Reynolds number

ν =
µ

ρ0L
2N0

,

µ being the dynamic fluid viscosity, and F represents externally applied forcing (ρF
is force per unit volume).

In the Boussinesq approximation (β → 0), we may write ρ = 1 and if, furthermore,
the background stratification is assumed uniform (constant Brunt–Väisälä frequency
N = 1), the equation of mass conservation (2.3) and the momentum equation (2.4)
simplify to

ρt + u · ∇ρ − v = 0, (2.5)

ut + u · ∇u = −∇p − ρ j + ν∇2u + F. (2.6)

Consider now linear sinusoidal plane-wave disturbances in an inviscid uniformly
stratified Boussinesq fluid. Taking the wavenumber k = k(sin θ, cos θ) to lie in the
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(x, y)-plane at an angle θ to the vertical, it follows from (2.2) and the linearized forms
of (2.5) and (2.6) (with ν = 0, F = 0) that

u = i k(cos θ, −sin θ) exp{i(kη −sin θt)}, (2.7)

(ρ, p) = (k, i cos θ) exp{i(kη −sin θt)}, (2.8)

where

η = x sin θ + y cos θ, (2.9)

and the wave frequency

ω = sin θ (2.10)

satisfies the dimensionless version of the dispersion relation (1.1).
Since, as already remarked, ω is independent of k, we may construct more general

linear time-harmonic solutions with this same frequency, via superposition of (2.7)
and (2.8), by fixing θ and varying k:

u = Qη (cos θ, − sin θ) e−i sinθ t + c.c., (2.11)

(ρ, p) = (−i Qη, i cos θ Q) e−i sinθ t + c.c., (2.12)

where Q(η) is a general complex amplitude and c.c. denotes complex conjugate.
It is important to note that the velocity field (2.11) is transverse to the η-direction;

hence u and ρ, being functions of η alone, do not vary along the direction of u.
As a result, the nonlinear convective-derivative terms in (2.5) and (2.6) vanish and,
therefore, (2.11) and (2.12) are also nonlinear solutions to the inviscid equations of
motion. While it is well known that sinusoidal plane-wave disturbances in a uniformly
stratified Boussinesq fluid satisfy the nonlinear equations of motion, it is now clear
that this property in fact holds for the more general class of disturbances (2.11) and
(2.12).

In view of (2.9), the nonlinear solutions (2.11) and (2.12) describe uniform plane
waves along

ξ = x cos θ − y sin θ, (2.13)

but with a general profile along the η-direction. The frequency of oscillation (2.10)
of these beam-like wave structures depends only on the angle θ that the η-direction
makes with the vertical, precisely as the oscillation frequency of St Andrew’s Cross.
In the ensuing analysis, we shall make use of these nonlinear inviscid solutions to set
up an asymptotic theory for the propagation of nonlinear wave beams that takes into
account viscous and refraction effects in the presence of non-uniform background
flow conditions.

3. Modulated nonlinear beams
According to experimental observations, internal wave beams due to an oscillating

body are relatively thin, their width being comparable to the size of the source
(see Lighthill 1978, § 4.4), and numerical simulations reveal that the same is true
for beam-like disturbances generated by thunderstorms (see, for example, Fovell
et al. 1992). This suggests a boundary-layer-type approximation in which variations
across the beam are assumed to be more rapid than those along the beam. This ap-
proach was taken by Thomas & Stevenson (1972) in deriving a steady-state viscous
similarity solution for small-amplitude beams, and will also be adopted in the analysis
below. Here, however, taking advantage of the nonlinear solutions (2.11) and (2.12)
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for uniform inviscid beams noted earlier, we shall discuss slightly viscous beams of
finite amplitude. Clearly, in the presence of variations along the beam direction, the
nonlinear convective-acceleration terms in (2.5) and (2.6) no longer vanish, and it is
of interest to ask how these nonlinearities would affect the beam evolution.

Focusing on a beam inclined at a finite angle θ to the horizontal, it is convenient
to rotate the coordinate system and work in terms of η and ξ defined in (2.9) and
(2.13), rather than x and y. Moreover, assuming that there are no variations in z,
we introduce the streamfunction ψ(ξ, η, t) so the incompressibility equation (2.2) is
automatically satisfied. The mass- and momentum-conservation equations (2.5) and
(2.6) (in a uniformly stratified Boussinesq fluid) then yield the following equations for
ρ and ψ:

ρt + sin θ ψη + cos θ ψξ + J (ρ, ψ) = 0, (3.1)

∇2ψt − sin θ ρη − cos θ ρξ + J (∇2ψ, ψ) − ν∇4ψ = χη − ζξ . (3.2)

Here, χ and ζ are the components of the applied forcing F along the ξ - and
η-directions, respectively, and J (a, b) stands for the Jacobian aξ bη − aη bξ .

In this formulation, the solution (2.11) and (2.12), corresponding to a uniform
inviscid nonlinear beam away from the region of forcing (F = 0), takes the form

ψ = Q(η) ei sin θ t + c.c., (3.3)

ρ = i Qη ei sin θ t + c.c.. (3.4)

We now seek an asymptotic solution of (3.1) and (3.2) for a slightly viscous nonlinear
wave beam with frequency ω = sin θ and amplitude that is slowly modulated along ξ

and in time. For this purpose, we introduce the scaled variables

ξ → ε ξ, τ = ε t, (3.5)

ε � 1 being a small parameter that controls the modulations. As will be seen, for
viscous effects to be as important as modulation effects, ν must be O(ε), and we
write

ν = 2αε, α = O(1). (3.6)

We also expand ψ and ρ as follows

ψ = {Q(η; ξ, τ ) eiωt + c.c.} + ε {Q2(η; ξ, τ ) e2iωt + c.c.} + ε Q0(η; ξ, τ ) + · · · , (3.7)

ρ = {R(η; ξ, τ ) eiωt + c.c.} + ε {R2(η; ξ, τ ) e2iωt + c.c.} + ε R0(η; ξ, τ ) + · · · , (3.8)

anticipating that, in addition to the frequency ω = sin θ of the forcing

(χ, ζ ) = (χ̂ , ζ̂ ) eiωt + c.c., (3.9)

the response also comprises higher harmonics and a mean term owing to nonlinear
interactions precipitated by the modulations. Substituting expansions (3.7) and (3.8)
in equations (3.1) and (3.2), collecting the various harmonics making use of the fact
that R = i Qη + O(ε) in view of (3.3) and (3.4), yields for the mean

Q0 = − i

sin θ
J (Q, Q∗), (3.10a)

R0 =
1

sin θ
{J (Qη, Q

∗) + J (Q∗
η, Q)}, (3.10b)
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where ∗ denotes complex conjugate, and for the second harmonic

Q2η =
i

sin θ
J (Qη, Q), (3.11a)

R2 = i Q2η. (3.11b)

By equating first-harmonic terms and using (3.10) and (3.11), it then follows from
(3.1), correct to O(ε2):

R = i Qη + i
ε

sin θ
(cos θ Qξ + i Qητ ) − i

ε2

sin2 θ
(Qητ − i cos θ Qξ )τ

+
ε2

sin θ
J (Q∗, Q2)η + i

ε2

sin2θ
{2J [J (Qη, Q

∗), Q] − (J [J (Q, Q∗), Q])η}. (3.12)

Similarly, equating first-harmonic terms in (3.2) gives to the same order of ε:

sin θ (i Qη − R)η + ε (Qηητ − cos θ Rξ − 2α Qηηηη) + ε2 {i sin θ Qξξ + J (Q2ηη, Q
∗)

+ J (Q∗
ηη, Q2) − J (Q0, Qηη) − J (Q, Q0ηη)} = χ̂η − ε ζ̂ξ + O(ε3). (3.13)

Finally, inserting (3.12) into (3.13) and making further use of (3.10) and (3.11), we
can eliminate R, Q0 and Q2 to obtain, after a considerable amount of algebra, a
single evolution equation for Q(η; ξ, τ ):

2ε(Qητ − i cos θ Qξ − αQηηη)η + i ε2 sin θ Qξξ +
2i ε2

sin θ
{J [J (Qη, Q), Q∗]

+ J [J (Q∗, Qη), Q] + J [J (Q, Q∗), Qη]}η = χ̂η − ε ζ̂ξ + O(ε3). (3.14)

Although not immediately obvious, it can be verified by expanding out the Jacobians
that the nonlinear terms in (3.14) cancel out. This implies that linear dispersive and
viscous effects dominate nonlinear modulation effects in spite of the fact that the re-
sponse amplitude is O(1). Interestingly, Dauxois & Young (1999) encountered the
same combination of Jacobians as in (3.14) (a special case of the Jacobi identity)
and reached a similar conclusion in their study of near-critical reflection of a finite-
amplitude internal wave from a slope in a uniformly stratified Boussinesq fluid. It
should be noted that the second-harmonic and mean terms in (3.10) and (3.11) are
non-zero, however, and contribute O(ε) nonlinear corrections to the response.

As expected, the most effective means of driving a beam is by applying forcing
in the beam direction, which is also the direction of u and of energy transport.
Moreover, since the forcing F was assumed to be locally confined in x and y, χ̂ may
be expressed in terms of the scaled far-field variable ξ as follows:

χ̂ (η, ξ ) ∼ 2ε f (η) δ(ξ ), (3.15)

where f (η) is locally confined in η.
Taking into account (3.15), it then follows from (3.14) that the amplitude of the

primary harmonic, to leading order in ε, is governed by

Qητ − i cos θ Qξ − α Qηηη = f (η) δ(ξ ). (3.16)

This evolution equation reflects a balance between dispersive, viscous and forcing
effects. The linear dispersive terms, in particular, are responsible for guiding the energy
coming from the forcing in the direction of the beam: according to the first two terms
in (3.16), disturbances ∝ exp(i lη) propagate along ξ with the corresponding group
velocity cos θ/l, consistent with the dispersion relation (2.10). The viscous term, on
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Figure 1. Cross-section of the response amplitude |Q| at ξ = 1; —, steady-state response;
· · · , transient response at τ = 0.5; – · –, τ = 1; – –, τ = 2.

the other hand, causes beams to broaden and decrease in amplitude away from the
source.

A special steady-state solution of the evolution equation (3.16), corresponding to
line forcing f (η) = δ(η), is the similarity solution of Thomas & Stevenson (1972):

Q =
i

2π cos θ

(cos θ

α

)1/3 1

ξ 1/3

∫ ∞

0

ds e−s3

exp

{
−i s

(
cos θ

α

)1/3
η

ξ 1/3

}
, (3.17)

and can be readily obtained from the steady version of (3.16) using transforms. While
the derivation of Thomas & Stevenson (1972) was based on linear theory, the fact
that (3.16) remains valid in the nonlinear regime indicates that this similarity solution
is actually not limited to small-amplitude disturbances. On the other hand, being a
far-field solution, it is not valid in the vicinity of the forcing (ξ → 0) and cannot
be expected to capture phenomena arising from the details of the flow field close to
the source, such as the viscous boundary layers forming around a vibrating cylinder
(Sutherland & Linden 2002).

The steady-state response (3.17) at ξ = 1 for θ = 1
6
π and α = 1 is plotted in figure 1

along with the corresponding transient response at various times τ . The transient
response was obtained by solving (3.16) numerically, starting from rest and turning
on the forcing impulsively at τ = 0. (Details of the numerical procedure are given
in the Appendix.) It is seen that |Q|(η = 0, ξ = 1) is within 10% of the steady-state
value after τ ≈ 2. Based on this time, we estimate that it would take about 1–2 min
for a steady state to be established at distances from the source typical of those where
measurements were made in the experiments of Thomas & Stevenson (1972) and
Sutherland & Linden (2002).
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4. Nearly vertical propagation
According to the dispersion relation (2.10), gravity wave beams propagate nearly

vertically (θ → 1
2
π) when the driving frequency is close to the Brunt–Väisälä frequency

(ω→1). As is evident from (3.17), this is a singular limit, however, and requires special
treatment. Physically, as θ → 1

2
π, it follows from (2.10) that the group velocity vanishes

so energy cannot propagate easily away from the source, and the transient response
evolves on a slower time scale than in the case of oblique propagation. The need
for re-scaling as θ → 1

2
π is also clear from (3.14) since the coefficient multiplying

Qξη vanishes, suggesting that the O(ε2) dispersive term involving Qξξ should come
into play in this limit. Here, we shall first derive the evolution equation governing
two-dimensional nearly vertically propagating wave beams and then show that a
similar equation applies in the analogous axisymmetric problem.

4.1. Two-dimensional disturbances

Employing the same boundary-layer approximation as before, we shall consider beams
that vary slowly along the direction of propagation and, for this purpose, we introduce
the stretched y-coordinate

Y = ε y. (4.1)

Also, in line with the remarks made earlier, the transient response here evolves
more slowly than in the case of oblique propagation and the appropriate ‘slow’ time
variable turns out to be

T = ε2t, (4.2)

rather than τ = ε t .
It is convenient to normalize the driving frequency to 1 and take the Brunt–Väisälä

frequency to be

N2 = 1 + ε2q(Y ), (4.3)

thus allowing for the possibility of a small non-uniformity in the background
stratification. Moreover, we may include weak non-Boussinesq effects by assuming
that the Boussinesq parameter

β = σε, σ = O(1); (4.4)

it then follows from (2.1) that the background density ρ, to leading order, varies
exponentially with height:

ρ = e−σY . (4.5)

Finally, the choice

ν = 2α2ε2, α = O(1), (4.6)

ensures that viscous effects are as important as modulation and non-Boussinesq
effects.

Returning to the governing equations (2.2)–(2.4), again we introduce the
streamfunction ψ so as to satisfy (2.2) automatically. After eliminating p,
implementing the scalings (4.1)–(4.6) in equations (2.3) and (2.4) then yields the
following equation system, correct to O(ε2), for ψ(x, t; Y, T ) and ρ(x, t; Y, T ):

ρt + ψx + ε{J (ρ, ψ) + σρψx} + ε2(ρT + qψx) = 0, (4.7)

ψxxt − ρx + ε{J (ψxx, ψ) + σ (ρ ψxt )x}

+ ε2

{
ψxxT + ψYYt + σ (ρ J (ψx, ψ))x − σψYt − 2

α2

ρ
ψxxxx

}
= Fy − Gx − ε σF, (4.8)
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where F and G are, respectively, the horizontal and vertical components of the forcing
F and J (a, b) = axbY − aY bx .

Next, ψ and ρ are expanded in a manner analogous to (3.7) and (3.8):

ψ = {Q(x; Y, T ) eit +c.c.}+ε {Q2(x; Y, T ) e2it +c.c.}+ε Q0(x; Y, T )+· · · , (4.9)

ρ = {R(x; Y, T ) eit +c.c.}+ε {R2(x; Y, T ) e2it +c.c.}+ε R0(x; Y, T )+ · · · . (4.10)

Upon substituting these expansions in (4.7) and (4.8), collecting mean terms and
using the fact that R = i Qx + O(ε), we obtain

Q0x + i J (Q, Q∗)x = 0, (4.11a)

R0x − {J (Qx, Q
∗) + J (Q∗

x, Q) + 2σ |Qx|2}x = 0. (4.11b)

Apart from the mean-flow component induced by nonlinear interactions, we shall
also allow for a possible O(ε2) background shear flow ε2 u(Y ):

u(Y ) = QY ; (4.12)

integrating (4.11) then

Q0 = Q − i J (Q, Q∗), (4.13a)

R0 = J (Qx, Q
∗) + J (Q∗

x, Q) + 2σ |Qx|2 . (4.13b)

Similarly, equating second-harmonic terms in (4.7) and (4.8) yields

Q2x = i J (Qx, Q) − 1
3
i σ Q2

x, (4.14a)

R2 = −J (Qx, Q) − 1
3
σ Q2

x. (4.14b)

Finally, collecting primary-harmonic terms in equations (4.7) and (4.8), we find

R = i Qx + i ε2 (RT + q Qx) + i ε2 {J (R0, Q) + J (R, Q0) − J [J (Qx, Q), Q∗]

− i J (Q∗
x, Q2)} + 4

3
i ε2σ

{
σ Q2

xQ
∗
x + Qx J (Qx, Q

∗)
}
, (4.15)

i Qxx − Rx + ε2

(
QxxT + i QYY − i σQY − 2

α2

ρ
Qxxxx

)

+ ε2 {J (Q2xx, Q
∗) + J (Q∗

xx, Q2) + J (Q0xx, Q) + J (Qxx, Q0)}
+ i ε2σ

{
2Q∗

x J (Qx, Q) + 2Qx J (Qx, Q
∗) + 2Qx J (Q∗

x, Q) + 5
3
σQ2

xQ
∗
x

}
x

= F̂ y − Ĝx − ε σ F̂ , (4.16)

where

(F, G) = (F̂ , Ĝ) eit + c.c.. (4.17)

As before, making use of (4.13)–(4.15), it is possible to eliminate Q0, R0, Q2, R2 and
R from (4.16) and thus obtain a single evolution equation for Q. After considerable
manipulation, it turns out (not unexpectedly this time) that all nonlinear modulation
terms cancel out, the only remaining nonlinear terms in this equation coming from
non-Boussinesq effects:{

2i QxT + q Qx + 2i uQxx − 1
3
σ 2Q2

xQ
∗
x

}
x

− QYY + σQY − i
2α2

ρ
Qxxxx

= − i hx δ(Y ) + i f [δ′(Y ) − σ δ(Y )], (4.18)
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where

(F̂ , Ĝ) = ε(f (x), ε h(x)) δ(Y ) (4.19)

is the far-field expression of the applied forcing. It is worth noting that small-
amplitude forcing along the beam gives rise to an O(1) response; this is a resonance
phenomenon owing to the vanishing of the group velocity for vertically propagating
beams.

The evolution equation (4.18) describes the generation of nearly vertical nonlinear
wave beams by oscillatory forcing, including dispersive, viscous, non-Boussinesq as
well as refraction effects under non-uniform background flow conditions. When all
these effects come into play, we have to resort to numerical solution of (4.18), and
specific examples will be discussed in § 6. Here, in an effort to understand the various
terms that enter in (4.18), we shall briefly consider certain limiting cases that are
amenable to analytical treatment.

According to (4.18), ignoring viscous effects (α = 0) and the background shear
(u ≡ 0), the steady-state response in a Boussinesq fluid (σ = 0) satisfies

qQxx − QYY = −i hx δ(Y ) + i f δ′(Y ). (4.20)

When q > 0 so the driving frequency is below the Brunt–Väisälä frequency according
to (4.3), this is a forced wave equation in the (x, Y )-plane, and the response is a St
Andrew’s Cross with arms along the characteristic directions dx/dY = ± q1/2. On the
other hand, if q < 0, (4.20) is elliptic and no propagation occurs above the Brunt–
Väisälä frequency. This suggests that the nonlinear interaction term in (4.18), brought
about by non-Boussinesq effects (σ �= 0), as it amounts to replacing q by q − 1

3
σ 2|Qx |2,

would possibly bend the arms of the St Andrew’s Cross towards the vertical by an
amount depending on the local response amplitude. We shall return to this point in
§ 6.

In the special case of purely vertical line forcing (f ≡ 0, h = δ(x)) at exactly the
Brunt–Väisälä frequency (q = 0) in a Boussinesq fluid (σ = 0, ρ = 1) with no back-
ground shear (u ≡ 0), the response satisfies

2i QxxT − QYY − 2i α2Qxxxx = −i δ′(x) δ(Y ). (4.21)

The corresponding steady-state solution takes the similarity form

Qx =
1

4π

1 − i

α

1√
Y

∫ ∞

0

ds cos

(
s

x√
Y

)
exp((i − 1)αs2) (4.22)

and was first derived by Gordon & Stevenson (1972) based on linear theory;
the present analysis, however, reveals that this solution is not limited to linear
disturbances.

The transient solution of (4.21) and the approach to the steady state (4.22) will be
further discussed in § 5, in connection with the experimental observations of Gordon
& Stevenson (1972).

4.2. Axisymmetric disturbances

We now turn attention to axisymmetric nearly vertical wave beams. As the analysis
closely parallels that of § 4.1, here we shall only sketch the main steps and, for
simplicity, we shall assume Boussinesq flow (σ = 0, ρ = 1) and purely vertical forcing
(F = G j ).
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Under the same scalings, (4.1)–(4.3), as before, we shall again work with ρ(r, t; Y, T )
and the streamfunction ψ(r, t; Y, T ) defined so that

u =
ε

r
ψY , v = −1

r
ψr, (4.23)

u being the velocity component along the direction of the radial coordinate r; the
incompressibility condition (2.2) is thus satisfied automatically.

It then follows from (2.3) and (2.4) that ρ and ψ satisfy, correct to O(ε2):

ρt +
1

r
ψr +

ε

r
J (ρ, ψ) + ε2

(
ρT +

q

r
ψr

)
= 0, (4.24)(

ψr

r

)
rt

− ρr + ε J

(
1

r

(
ψr

r

)
r

, ψ

)

+ ε2

{
1

r
ψYY t +

(
ψr

r

)
rT

− 2α2

[
1

r

(
r

(
ψr

r

)
r

)
r

]
r

}
= −Gr, (4.25)

assuming again that ν = 2α2ε2 and J (a, b) = arbY − aY br now being the Jacobian in
the (r , Y )-plane.

After introducing expansions for ρ and ψ similar to those in (4.9) and (4.10),
substituting these expansions into (4.24) and (4.25) yields for the mean and second-
harmonic terms:

Q0 =
i

r
J (Q∗, Q), (4.26a)

R0 =
1

r
(J (Q, V ∗) + J (Q∗, V )), (4.26b)

Q2r = i J (Q, V ), (4.27a)

R2 =
1

r
J (V, Q), (4.27b)

where V = −Qr/r is the complex amplitude of the vertical velocity according to
(4.23).

Similarly, collecting the primary-harmonic terms in equations (4.24) and (4.25), we
have

R = −i V + iε2 (RT − qV ) + iε2

{
1

r
J (R0, Q) +

i

r

(
1

r
J (Q2, Q

∗)

)
r

− i

r
J (V, Q0)

}
,

(4.28)

iVr + Rr + ε2

{
VrT − i

r
QYY − 2α2

(
(rVr )r

r

)
r

}
− ε2

{
J

(
1

r

(
Q2r

r

)
r

, Q∗
)

− J

(
V ∗

r

r
, Q2

)
+ J

(
1

r

(
Q0r

r

)
r

, Q

)
− J

(
Vr

r
, Q0

)}
= Ĝr . (4.29)

Following the same procedure as before, making use of (4.26)–(4.28), we can now
eliminate Q0, R0, Q2, R2 and R from (4.29) to obtain a single equation for Q.
While this is a tedious task, the final result is relatively simple, for all nonlinear
modulation terms cancel out once again. Specifically, we find that V satisfies the
evolution equation

1

r
{r(2i VT + qV )r}r − VYY − 2i α2 1

r

{
r

(
(rVr )r

r

)
r

}
r

=
i

r
(rhr )r δ(Y ), (4.30)
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where

Ĝ = ε2 h(r) δ(Y ) (4.31)

denotes the applied forcing.
According to (4.30), in the special case of point forcing at exactly the Brunt–Väisälä

frequency ( h(r) = δ(r) , q = 0 ), the steady-state response again takes a similarity
form:

V =
1

8π

1 − i

α

1

Y

∫ ∞

0

ds s J0

(
s

r√
Y

)
exp((i − 1)αs2), (4.32)

J0 being the Bessel function of order zero.
As would be expected, the axisymmetric response (4.32) drops off faster with vertical

distance Y from the source (like 1/Y ) than its two-dimensional counterpart (4.22)
which drops off like 1/

√
Y .

5. Comparison with experiment
Gordon & Stevenson (1972) conducted laboratory experiments for the purpose of

comparing against their steady-state similarity solution (4.22) of vertical wave beams.
They used as a source a circular cylinder oscillating at the Brunt–Väisälä frequency
in a stratified fluid tank, and measured the vertical displacement field across the
disturbance at several heights above the source. The experimental observations were
found to deviate significantly from the theoretical predictions, however, and Gordon
& Stevenson (1972) attributed these discrepancies to reflections from the top and
bottom walls of the tank. A revised theoretical solution, taking into consideration
these reflections by using a system of image sources to satisfy inviscid boundary
conditions at the walls, showed improved agreement with the experimental results.

Given that transients decay slowly for vertically propagating beams, we wish to
revisit the experimental observations of Gordon & Stevenson (1972) in the light of
the unsteady theory developed here. Figure 2 shows plots of the magnitude of the
vertical velocity |Qx | across the beam at the normalized height Y = 1 for various
values of the ‘slow’ time T , as obtained from solving the evolution equation (4.21)
numerically with α = 1 and the forcing turned on impulsively at T = 0 (see the
Appendix for details), along with a plot of the corresponding steady-state solution
(4.22) at this height. According to these plots, |Qx |(x = 0, Y = 1) is within 10% of
the steady-state value after T ≈ 50 or so.

Returning now to the non-dimensional variables adopted in § 2, may select the
characteristic length scale L so that the dimensional height of interest, y0 say, above
the source is normalized to Y = 1; this choice, combined with (4.5) taking α = 1,
then specifies

ε =

(
µ

2ρ0y
2
0N0

)1/4

. (5.1)

Hence, based on the estimate obtained above (T ≈ 50) for steady state to be
reached at Y = 1, and recalling that T = ε2t , the corresponding dimensional time t0
after which steady state would be expected at y0 turns out to be

t0 ≈ 50

(
2ρ0

µN0

)1/2

y0. (5.2)

Specifically, Gordon & Stevenson (1972) worked with a stratified fluid having
kinematic viscosity µ/ρ0 = 1.3 mm2 s−1 and N0 = 1.12 s−1, and made measurements
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Figure 2. Cross-section of the vertical-velocity amplitude |Qx | at Y = 1; —, steady-state
response; · · ·, transient response at T = 1; – · –, T = 10; – –, T = 50.

of the response at several heights y0 above the source in the range of 35–200 mm.
At these stations, according to (5.1), it would be necessary to wait roughly between
30 min and 3 h after the source has been turned on for steady state to be established.
On the other hand, as already remarked, in the experiments of Thomas & Stevenson
(1972), who used a similar experimental set-up to generate oblique beams, steady
state would be reached only within 1–2 min; moreover, Thomas & Stevenson (1972)
report good agreement between experimental observations and the corresponding
steady-state similarity solution (3.17).

This suggests that transient effects could have played a significant part in the
experiments of Gordon & Stevenson (1972), and comparing their experimental data
against unsteady responses predicted by the evolution equation (4.21), provides
further evidence in support of this claim. Figure 3 makes a comparison between
measurements of the magnitude of the vertical velocity across the beam at three
heights above the cylinder and our theoretical predictions for the unsteady response
at these stations at time T = 1.2, corresponding to 2 min after the source was turned
on; the corresponding theoretical steady-state responses according to (4.22) are also
shown on the same plot for reference. Since there is no direct way to link the vibra-
ting cylinder used as a source in the experiments to the line forcing in (4.21), the
theoretical response was multiplied by a constant factor so as to match the observed
centreline response at the single station y0 =35 mm, but no other fitting of the theory
to the experiment was made. At all three stations, the theoretical predictions are
in very good agreement with the observations close to the centreline (x = 0) and
capture reasonably well the secondary peaks of the measured responses away from
the centreline. It is worth noting that these peaks decay rather slowly as is evident
from figure 2; this would explain the discrepancies between the observations and the
steady-state response which features no secondary peaks (see figure 3).
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Figure 3. Comparison at three vertical distances (y0) above the source between experimental
observations of Gordon & Stevenson (1972) and theoretical unsteady response amplitude
at T =1.2. Experimental results �, at y0 = 35 mm; ×, 85 mm; �, 110 mm; transient res-
ponse —, at y0 = 35 mm; – –, 85 mm; – · –, 110 mm; · · · , corresponding steady-state responses
at these stations.

It was mentioned earlier that Gordon & Stevenson (1972), in an effort to explain
their observations, worked out a revised steady-state theory, taking into account
reflections from the top and bottom walls of their tank located 0.2 m from the source.
Based on the present unsteady theory, however, according to (5.2), it would take
several hours for the beams to reflect from the walls at steady state as assumed by
Gordon & Stevenson (1972).

6. Refraction effects
The propagation of gravity wave beams in the atmosphere is influenced significantly

by the presence of wind and variations in the Brunt–Väisälä frequency; the latter
typically occur near the tropopause, the boundary between the troposphere and the
stratosphere. As a result of non-uniform background flow conditions, the arms of
St Andrew’s Cross are no longer symmetrical owing to refraction effects, and
numerical simulations of gravity wave beams generated by thunderstorms clearly
show this asymmetric behaviour (Fovell et al. 1992; Lane et al. 2001).

We shall use the evolution equation (4.18) to discuss refraction effects on the
propagation of finite-amplitude nearly vertical beams. This equation is solved numeri-
cally using a spectral technique as described in the Appendix. The only nonlinear
term in (4.18) derives from non-Boussinesq effects, and it was suggested earlier that
this term would possibly cause the direction of beam propagation to bend towards the
vertical by an amount depending on the local wave amplitude. However, numerical
solutions indicate that such a nonlinear effect, if present at all, is masked by the
exponential variation of the disturbance with vertical distance Y brought about by
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Figure 4. Contour plot of the amplitude of the vertical velocity |Qx | at T = 4 for a pattern
generated by vertical line forcing at the origin under flow conditions corresponding to σ = 0,
q = 4, α = 1 and u = 0.

the linear non-Boussinesq term in (4.18). As linear non-Boussinesq effects are familiar,
in the interest of brevity, we shall focus here on Boussinesq flow (σ = 0, ρ = 1) which
also allows direct comparison with the simulations of Fovell et al. (1992).

We begin by showing in figure 4 a contour plot of the magnitude of the vertical
velocity |Qx | at T = 4, as obtained from solving equation (4.18) numerically for a
vertical line forcing at x = Y = 0 with α = 1, q = 4 and u ≡ 0; the driving frequency
is thus below the Brunt–Väisälä frequency, assumed here to be uniform, and no
background mean flow is present. Under such uniform flow conditions, no refraction
takes place; all four beams propagate symmetrically along the directions dx/dY = ±2
as in a St Andrew’s Cross, although the broadening of the beams away from the
source caused by viscous effects is quite evident here.

It is interesting to contrast figure 4 with figure 5 which shows a similar contour plot
for the pattern generated under the same flow conditions as above, but in the pre-
sence of variable Brunt–Väisälä frequency, q = 4 − 3

4
Y . Here, the fact that the

Brunt–Väisälä frequency decreases with height inhibits the propagation of the two
beams above the source, and the level Y = 16

3
where the driving frequency matches the

local Brunt–Väisälä frequency (q = 0) forms a barrier at which the beams are reflected
since no propagation is possible beyond this barrier (q < 0). On the other hand, the
two beams below the source bend away from the vertical owing to refraction, as they
propagate into a region of increasing Brunt–Väisälä frequency.

Turning next to the effects of a background flow, figure 6 shows a contour plot of
the disturbance generated under the same flow conditions as in figure 4, but in the
presence of a uniform mean flow u = 2. The main effect of the background flow is
to tilt all four beams towards the flow direction so the two beams to the right (left)
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Figure 5. Contour plot of the amplitude of the vertical velocity |Qx | at T = 4 for a pattern
generated by vertical line forcing at the origin under flow conditions corresponding to σ = 0,
q = 4 − 3

4
Y , α = 1 and u = 0.

of the source are brought closer to the horizontal (vertical); moreover, the mean flow
enhances (inhibits) propagation of the beams to the right (left) of the source.

These effects were also seen in the simulations of Fovell et al. (1992) and result
from the Doppler shifting of the dispersion relation (2.10) by the mean flow:

ω = sin θ + u kx, (6.1)

kx being the streamwise wavenumber component. Since kx > 0 (kx < 0) for the two
beams to the right (left) of the source, sin θ decreases (increases) in the presence of
the mean flow so as to satisfy (6.1); hence, the beams to the right (left) of the source
tilt away (towards) the vertical. Also, since the group velocity increases as the beam
direction moves away from the vertical, it is natural for the right-hand beams to have
propagated farther than the left-hand beams in figure 6.

The above reasoning may also be used to interpret the effects of a background
shear flow. Figure 7, in particular, shows a contour plot of the disturbance generated
under the same flow conditions as in figure 6, but with some shear added to the
uniform mean flow:

u = 2 + 0.1Y. (6.2)

The pattern is now entirely asymmetrical. Since the background flow increases
with height, the upper right-hand beam is tilted further away from the vertical as
it encounters an increasing background flow, and has propagated farther than the
lower right-hand beam. Similarly, the upper left-hand beam is pushed more towards
the vertical and has propagated less than the lower left-hand beam which encounters
an increasing background flow.

The forcing in all the computations reported above was taken to be vertical so
any asymmetry of the generated patterns derives solely from the background flow
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Figure 6. Contour plot of the amplitude of the vertical velocity |Qx | at T = 4 for a pattern
generated by vertical line forcing at the origin under flow conditions corresponding to σ = 0,
q = 4, α = 1 and u = 2.
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Figure 7. Contour plot of the amplitude of the vertical velocity |Qx | at T = 4 for a pattern
generated by vertical line forcing at the origin under flow conditions corresponding to σ = 0,
q = 4, α = 1 and u = 2 + 0.1Y .



Nonlinear internal gravity wave beams 159

conditions. We also briefly explored oblique forcing as another source of asymmetry.
It turns out that the beams which are predominantly excited are those closer to the
direction of the forcing, consistent with the findings of Fovell et al. (1992).

7. Final remarks
We have proposed an asymptotic theory for the propagation of finite-amplitude

gravity wave beams in nearly uniformly stratified flow. Quite remarkably, nonlinear
effects turn out to be relatively unimportant for both two-dimensional and
axisymmetric wave beams, which explains the success of previous studies interpreting
results from fully numerical simulations and field observations on the basis of linear
theory.

There are, nevertheless, at least two instances in which nonlinearity is expected to
play an important part. Specifically, in the case of two-dimensional nearly hydrostatic
wave beams that propagate almost horizontally (sin θ = ε � 1), the scaled horizontal
coordinate X = εx and the ‘slow’ time τ = εt are appropriate. It then follows from
(2.5) and (2.6) that the streamfunction ψ(y; X, τ ) and reduced density ρ(y; X, τ )
satisfy (for a Boussinesq fluid with ν = 2αε) to leading order

ρτ + ψy + ψX + J (ρ, ψ) = 0, (7.1)

ψyyτ − ρy − ρX − 2αψyyyy + J (ψyy, ψ) = Fy − GX, (7.2)

where εF and G denote, respectively, the horizontal and vertical components of the
forcing, and J (a, b) = aXby − aybX now stands for the Jacobian in the (X, y)-plane.
It is important to note that, unlike (4.7) and (4.8), the equation system (7.1) and (7.2)
remains fully nonlinear after rescaling so here nonlinearity is expected to have an
O(1) effect.

The second instance in which nonlinearity turns out to be important owing to a
stronger interaction of the primary harmonic with the induced mean flow, is that
of nearly vertically propagating non-axisymmetric beams; this case would arise, for
example, when a point source oscillates with frequency close to the Brunt–Väisälä
frequency in the presence of a horizontal background flow.

Both of these flow configurations are under current investigation and details will
be reported elsewhere.

The authors wish to thank Professors R. H. J. Grimshaw and V. I. Shrira for a
number of very helpful suggestions. Also several useful discussions on this and related
topics with Dr Robert Beland and his group at the Air Force Research Laboratory in
Hanscom AFB are gratefully acknowledged. Finally, we are grateful to an anonymous
referee who reviewed the manuscript very thoroughly and made several suggestions
that improved the final version of this paper.

This work was supported by the Air Force Office of Scientific Research, Air Force
Materials Command, USAF, under Grant F49620-01-1-001 and by the National
Science Foundation Grant DMS-0072145.

Appendix. Numerical procedures
Here we give details of the numerical procedures used to solve the evolution

equations (3.16) and (4.18).
The steady-state similarity solutions (3.17) and (4.22) were computed by simply

evaluating the integrals involved via the trapezoidal rule. Transient responses were
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obtained by spectral techniques using a fast Fourier transform. For this purpose, the
computational domain was set between 0 and 2π by suitable rescaling. In all cases,
forcing was turned on impulsively, taking the response to be zero initially.

Since (3.16) is a linear equation with constant coefficients, it was solved by working
in the Fourier domain where the Fourier transform F(Q) can be readily obtained
analytically as a function of time, and finally inverting F(Q) numerically. Care was
taken to ensure that the spatial domain used was large enough not to allow reflections
from the boundaries, and the spatial resolution was varied accordingly (from 512 × 512
to 2048 × 2048 Fourier modes) so that the transform of the disturbance did not
reach the boundaries of the Fourier domain. Specifically, for the results shown in
figure 1, 2048 × 2048 Fourier modes were used in the spatial domain −30 < ξ < 30,
−60 < η < 60.

For the purpose of solving the evolution equation (4.18) numerically, it proved
more convenient to work with the vertical velocity amplitude V = −Qx and use the
following transformation

V = exp
(

1
2
σY

)
Ṽ , (A 1)

to remove the term involving VY . Implementing (A 1) after differentiating (4.18) once
with respect to x, the transformed variable Ṽ satisfies the following equation{

2i ṼT + q Ṽ + 2iu Ṽx − 1
3
σ 2 exp(σY )Ṽ 2Ṽ ∗}

xx
− ṼYY + 1

4
σ 2 Ṽ − 2iα2 exp(σY )Ṽxxxx

= i exp
(
− 1

2
σY

)
{hxx δ(Y ) + fx[σ δ(Y ) − δ′(Y )]}. (A 2)

To advance Ṽ in time, we apply the split-step pseudospectral method of Lo &
Mei (1985, 1987) to (A 2). Specifically, at each time step, the nonlinear terms as
well as the linear terms with variable coefficients are approximated by centred finite
differences while the rest of the linear terms are treated by Fourier transform. For
the computations presented in § 6, in particular, a computational grid with 512 × 512
points and the time step �T = 0.001 were used. The same computations were also
repeated using �T = 0.01 on a 256 × 256 grid with no significant change in the
results.

Since the response vanishes far from the source and the forcing is locally confined,
it follows from (A 2), by integrating with respect to the cross-beam direction, that Ṽ

satisfies a constraint of the form(
∂2

∂Y 2
− σ 2

4

)∫ ∞

−∞
Ṽ dx = 0, (A 3)

which combined with the fact that Ṽ → 0 as Y → ±∞ implies that∫ ∞

−∞
Ṽ dx = 0, (A 4)

and hence the value of F(Ṽ ) at zero wavenumber in the cross-beam direction must
vanish. Using a Fourier transform to integrate (A 2) allows us to satisfy this constraint
exactly.
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